0=-16t^2+84t+72

Simple and best practice solution for 0=-16t^2+84t+72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+84t+72 equation:



0=-16t^2+84t+72
We move all terms to the left:
0-(-16t^2+84t+72)=0
We add all the numbers together, and all the variables
-(-16t^2+84t+72)=0
We get rid of parentheses
16t^2-84t-72=0
a = 16; b = -84; c = -72;
Δ = b2-4ac
Δ = -842-4·16·(-72)
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{11664}=108$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-108}{2*16}=\frac{-24}{32} =-3/4 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+108}{2*16}=\frac{192}{32} =6 $

See similar equations:

| 3-5b-2b=-2-2 | | (x+10)+2x+(3x+20)=180° | | 5m-4-2m=-3+4m | | 9+7n=2n+9+n | | (2x/11)=(9/4) | | X/4/5x-5=-2 | | x(2x-3)=68 | | (x/11)=(9/4) | | x^2-51=14x | | 20x^2+1.5x-0.4*4x=0 | | 5x+17-4x=2 | | 24= 32−4t | | 3g-9=11g-21 | | 1/4(x+2=5/6 | | 1.5/4x-1=0.4/x+41.5/4x-1=0.4/x+4 | | 11h−8h=12 | | 4(x-5)-5(x-4)=x+5-(x-1) | | 9(3x-1)=31 | | (k-3)/5=11 | | 4(x-5)-5(x-4)=x+5-(x-1 | | 2x+7=1/4x+9 | | -5(2x+3)=-2(3-x)+3 | | -1=b-6/15 | | 14=28-7x | | 3=-1+b/2 | | 30=x/8+6 | | 2(5n-8)=14 | | 3x+20=9x+10 | | 3e-18=-12-3e | | 1.6d=7.5 | | 20u-4-7u-7=28 | | 0.55x+0.05(x-10)=0.10(-65) |

Equations solver categories